
SmartPin SDK - Android

Prerequisites

You need to have an SmartPin account

To initialize you need to have a client secret, and a one time password. This one time password can
only be used once to create a accesstoken. In the SmartPin app you can also revoke tokens, when
you revoke a token the accesstoken will become invalid.

1. Get an accesstoken

1.1 Retrieve client secret and One Time Password

Login in the SmartPin app as the contract owner
Go to settings
Go to 'Options for developers'
Enable 'Allow API access'
Copy the client secret
Go to Manage access tokens
Create a new One Time Password

1.2 Retrieve an accesstoken

In Postman (https://getpostman.com) or Paw (https://paw.cloud) create a new POST request with the
following content:

The token_inactivity_timeout is a double, you can enter a number of days the token is valid
when there is no activity on this token. The minimum 1 day, maximum 90 days. This field is optional,
the default value is 7 days.

Create a basic authorization header, the username is your contractnumber, the password is your
client_secret.

https://getpostman.com/
https://paw.cloud/

With the call you retrieve an access_token, you can use this to initialize the SDK.

2. Initialize the SDK

To initialize the SDK you need to call:

sandbox: Boolean When true , the SDK will communicate with the sandbox server. Use this for
development. Dont't forget to set this to false when releasing the final version of your app.
accesstoken: String
listener : SPInitListener

In the init call the SDK validates the SDK and access token. When the SDK is invalid (e.g. there is a
newer version, and older versions are blocked) or the access token is invalid, you'll recieve an
SPError.

3. Get orders

3.1 Get orders in a range

You can retrieve orders for your contract within a range of two dates. You can get the orders by
calling:

POST https://production.rspin.nl/api/v1/oauth/token

Content-Type: application/json

Accept: application/json

Authorizaton: [Basic authorization with contract and client_secret]

Content:

{

 "grant_type":"client_credentials",

 "otp":"[One Time Password]",

 "access_token_validity":7

}

 SmartPinManager.init(sandbox, token, object : SPInitListener {

 override fun onReady() {

 //SDK successfully initiated

 }

 override fun onNotReady(error: SPError) {

 // Error while initializing SDK. See the error object.

 }

})

startDate: Date
endDate: Date (Optional). If endDate is not present, you'll retrieve the orders up to and including
today.
listener : SPOrdersListener

3.2 Get single order based on id

You can get a single order bases on a id by calling:

id: Long The id of the order you want to retrieve
listener : SPOrderListener

4. Get sites

You can retrieve all the sites within the contract by calling:

SmartPinManager.getOrders(startDate, null, object : SPOrdersListener {

 override fun onOrdersReceived(orderList: List<SPOrder>) {

 // Retrieved the orders

 }

 override fun onOrdersFailed(error: SPError) {

 // Error retrieving the orders, see the error object

 }

})

SmartPinManager.getOrder(orderId, object : SPOrderListener {

 override fun onOrderReceived(order: SPOrder) {

 // Retrieved the order

 }

 override fun onOrderFailed(error: SPError) {

 // Error retrieving the order, see the error object

 }

})

sites : List The ID of the order you want to retrieve
listener : SPSitesListener

5. Get terminals

To retrieve all terminals within the SmartPin contract you call:

siteId: String (Optional) The external id of the site. Leave empty if you want to retrieve all the
terminals in the contract.
listener : SPTerminalsListener

6. Do a connection test with the terminal

You can do a connection test with the terminal to make sure the terminal is connected to the right
environments. You can do this by calling:

SmartPinManager.getSites(object : SPSitesListener {

 override fun onSitesReceived(sites: List<SPSite>) {

 // Retrieved the sites within the contract

 }

 override fun onSitesFailed(error: SPError) {

 // Error while retrieving the sites, see the error object

 }

})

SmartPinManager.getTerminals(object : SPTerminalsListener {

 override fun onTerminalsReceived(terminalsList: List<SPTerminal>) {

 // Retrieved the terminals

 }

 override fun onTerminalsFailed(error: SPError) {

 // Error while retrieving the terminals, see the error object

 }

}, siteId)

listener : SPTestListener

7. Check terminal availability

You can check if there is an available terminal:

8. Transactions

Implement SPPaymentListener to receive updates about transactions.

8.1 SPPaymentListener

Assign this listener to SmartPinManager.paymentListener to receive callback events.

order : SPOrder
error : SPError

8.1.1 fun onPaymentError(error: SPError)

This function is called when the payment has errored. This could be for several reasons:

The SDK is blocked
The amount is too high or too low. (Max = 9999999, Min = -9999999)
The payment type is invalid
There is no terminal connected when performing an pin payment

SmartPinManager.testConnection(object : SPTestListener {

 override fun onTestSuccessful() {

 // Terminal connected and valid

 }

 override fun onTestFailed(error: SPError) {

 // Terminal not connected or not valid, see the error object.

 }

})

val terminalConnected = SmartPinManager.isExternalDeviceAvailable()

interface SPPaymentListener {

 fun onPaymentSuccess(order: SPOrder)

 fun onPaymentUnknown(error: SPError)

 fun onPaymentDeclined()

 fun onPaymentError(error: SPError)

}

The connected terminal is invalid, or it does not belong to your contract.
There can be more errors, these will be explained in the SPError.

8.1.2 fun onPaymentSuccess(order: SPOrder)

This function is called when the payment is approved. You'll retrieve the SPOrder back.

8.1.3 fun onPaymentDeclined(error: SPError)

This function is called when a payment is declined. This can happen for several reasons, for example:

Transaction cancelled on the terminal
Connection error halfway through the transaction

8.1.4 fun onPaymentUnknown(error: SPError)

Called when we don't know the status of the payment. This happens mostly when we retrieve a
unknown status from the terminal.

When this happens, the payment will be synced in the backend. After a while you'll get the correct
status of this payment in the 3. Get orders call.

8.2 Cash transactions

You can start a cash payment by providing the payment type CASH [SPPaymentType] and an amount

type : SPPaymentType
amount: BigDecimal
reference: String (Optional)

Once then transaction is successfully stored, onPaymentSuccess() will be called.

When there is an error, onPaymentError(error: SPError) will be called. This can happen when
there is a network issue. In this case the payment is not stored in the SmartPin backend. It could be
that the payment was successful, but the transaction was not stored. You'll retrieve the error
paymentNotStored . The customer has succesfully paid, and the transaction will be stored in the
SmartPin backend later.

8.3 Pin transactions

You can start a cash payment by providing the payment type PIN [SPPaymentType] and an amount

SmartPinManager.startPayment(

 SPPaymentType.CASH,

 amount,

 reference

)

type : SPPaymentType
amount: BigDecimal
reference: String (Optional)

Once the payment is finished one of the delegate functions described in SPPaymentListener will be
called.

8.4 Retour transaction

When you want to do a retour/refund transactions, make the amount send in the startPayment()
call negative.

9. Listeners

9.1 SPInitListener

error : SPError

9.2 SPOrdersListener

orders : List A list with order objects
error : SPError

9.3 SPOrderListener

SmartPinManager.startPayment(

 SPPaymentType.PIN,

 amount,

 reference

)

interface SPInitListener {

 fun onReady()

 fun onNotReady(error: SPError)

}

interface SPOrdersListener {

 fun onOrdersReceived(orders: List<SPOrder>)

 fun onOrdersFailed(error: SPError)

}

order : SPOrder
error : SPError

9.4 SPSitesListener

order : List A list with site objects
error : SPError

9.5 SPSiteListener

order : SPSite
error : SPError

9.6 SPTerminalsListener

terminals : List A list with terminal objects
error : SPError

9.7 SPTerminalListener

interface SPOrderListener {

 fun onOrderReceived(order: SPOrder)

 fun onOrderFailed(error: SPError)

}

interface SPSitesListener {

 fun onSitesReceived(orders: List<SPSite>)

 fun onSitesFailed(error: SPError)

}

interface SPSiteListener {

 fun onSiteReceived(site: SPSite)

 fun onSiteFailed(error: SPError)

}

interface SPTerminalsListener {

 fun onTerminalsReceived(terminals: List<SPTerminal>)

 fun onTerminalsFailed(error: SPError)

}

terminal : SPTerminal
error : SPError

9.8 SPDeviceListener

9.9 SPTestListener

error : SPError

10. Objects

10.1 SPError

For now there are 9 cases the ErrorCode can contain. Keep in mind that in update of the SDK, new
codes can be added.

10.2 SPOrder

interface SPTerminalListener {

 fun onTerminalReceived(terminal: SPTerminal)

 fun onTerminalFailed(error: SPError)

}

interface SPDeviceListener {

 fun onConnecting()

 fun onConnected()

 fun onDisconnected()

}

interface SPTestListener {

 fun onTestSuccessful()

 fun onTestFailed(error: SPError)

}

data class SPError(

 var code: ErrorCode = ErrorCode.GENERIC,

 var message: String = "" // The description of the error if available

)

class SPOrder(

 var id: Long? //The ID of the order

 var date: String? //The date and time of the transaction

10.3 SPSite

10.4 SPTerminal

10.5 SPPaymentType

10.6 ErrorCode

 var terminalDate: String? //The date and time of when transaction reached the

terminal

 var siteId: String? //The id of the site where this transaction was done

 var terminalId: String? //The id of the terminal that handled the transaction

 var type: SPPaymentType //An enum containing pin or cash

 var paymentMethod: String? //The payment method of this transaction (e.g.

maestro)

 var amount: BigDecimal //The amount of the transaction in cents

 var transactionId: String? //The unique transaction id if this order

 var aid: String? //The AID of the pin transaction

 var pan: String? //The truncated pan of the card holder

 var authCode: String? //The authorizationcode of the transaction

 var status: SPPaymentStatus //The status of the transaction, (Pending, failed

or success)

 var responseCode: Int? //The responsecode of the transaction

 var externalId: String? //The unique external id of this transaction

 var reference: String? //The reference of the order

)

class SPSite (

 var id: Long?

 var externalId: String //The external id of the site

 var name: String //The external id of the site

 var terminals: List<SPTerminal> //A list of terminals belonging to this site

)

class SPTerminal (

 var externalId: String

)

enum class SPPaymentType {

 PIN,

 CASH

}

enum class ErrorCode {

 GENERIC, //A generic ErrorCode, see the message what the error is.

 BACKEND_OFFLINE, //The backend of SmartPin (Or internet conncetion) is

offline

 AMOUNT_INVALID, //The amount send in the payment is invalid

 REFUND_DISABLED, //You are doing a refund transaction, but refund payments

are disabled in your SmartPin contract

 CONNECTION_ERROR, //There is a connection error with the terminal

 SDK_BLOCKED, //This SDK version is blocked, please update your SDK

 INVALID_TOKEN, //The token submitted is invalid

 PAYMENT_NOT_STORED, //The payment was successful, but could not be stored in

the backend. It will be synced later

 BACKEND_OFFLINE, //There was a error in the backend, or with the internet

connection. You can see the statuscode of the network call.

}

	SmartPin SDK - Android
	Prerequisites
	1. Get an accesstoken
	1.1 Retrieve client secret and One Time Password
	1.2 Retrieve an accesstoken
	2. Initialize the SDK
	3. Get orders
	3.1 Get orders in a range
	3.2 Get single order based on id
	4. Get sites
	5. Get terminals
	6. Do a connection test with the terminal
	7. Check terminal availability
	8. Transactions
	8.1 SPPaymentListener
	8.1.1 fun onPaymentError(error: SPError)
	8.1.2 fun onPaymentSuccess(order: SPOrder)
	8.1.3 fun onPaymentDeclined(error: SPError)
	8.1.4 fun onPaymentUnknown(error: SPError)

	8.2 Cash transactions
	8.3 Pin transactions
	8.4 Retour transaction
	9. Listeners
	9.1 SPInitListener
	9.2 SPOrdersListener
	9.3 SPOrderListener
	9.4 SPSitesListener
	9.5 SPSiteListener
	9.6 SPTerminalsListener
	9.7 SPTerminalListener
	9.8 SPDeviceListener
	9.9 SPTestListener

	10. Objects
	10.1 SPError
	10.2 SPOrder
	10.3 SPSite
	10.4 SPTerminal
	10.5 SPPaymentType
	10.6 ErrorCode

